Computer Science > Software Engineering
[Submitted on 10 Aug 2023 (v1), last revised 2 Jul 2024 (this version, v3)]
Title:A Quantitative and Qualitative Evaluation of LLM-Based Explainable Fault Localization
View PDF HTML (experimental)Abstract:Fault Localization (FL), in which a developer seeks to identify which part of the code is malfunctioning and needs to be fixed, is a recurring challenge in debugging. To reduce developer burden, many automated FL techniques have been proposed. However, prior work has noted that existing techniques fail to provide rationales for the suggested locations, hindering developer adoption of these techniques. With this in mind, we propose AutoFL, a Large Language Model (LLM)-based FL technique that generates an explanation of the bug along with a suggested fault location. AutoFL prompts an LLM to use function calls to navigate a repository, so that it can effectively localize faults over a large software repository and overcome the limit of the LLM context length. Extensive experiments on 798 real-world bugs in Java and Python reveal AutoFL improves method-level acc@1 by up to 233.3% over baselines. Furthermore, developers were interviewed on their impression of AutoFL-generated explanations, showing that developers generally liked the natural language explanations of AutoFL, and that they preferred reading a few, high-quality explanations instead of many.
Submission history
From: Shin Yoo Dr [view email][v1] Thu, 10 Aug 2023 10:26:55 UTC (607 KB)
[v2] Sat, 26 Aug 2023 05:00:56 UTC (646 KB)
[v3] Tue, 2 Jul 2024 13:25:16 UTC (2,838 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.