Computer Science > Information Retrieval
[Submitted on 10 Aug 2023 (v1), last revised 24 Oct 2023 (this version, v4)]
Title:Beyond Semantics: Learning a Behavior Augmented Relevance Model with Self-supervised Learning
View PDFAbstract:Relevance modeling aims to locate desirable items for corresponding queries, which is crucial for search engines to ensure user experience. Although most conventional approaches address this problem by assessing the semantic similarity between the query and item, pure semantic matching is not everything. In reality, auxiliary query-item interactions extracted from user historical behavior data of the search log could provide hints to reveal users' search intents further. Drawing inspiration from this, we devise a novel Behavior Augmented Relevance Learning model for Alipay Search (BARL-ASe) that leverages neighbor queries of target item and neighbor items of target query to complement target query-item semantic matching. Specifically, our model builds multi-level co-attention for distilling coarse-grained and fine-grained semantic representations from both neighbor and target views. The model subsequently employs neighbor-target self-supervised learning to improve the accuracy and robustness of BARL-ASe by strengthening representation and logit learning. Furthermore, we discuss how to deal with the long-tail query-item matching of the mini apps search scenario of Alipay practically. Experiments on real-world industry data and online A/B testing demonstrate our proposal achieves promising performance with low latency.
Submission history
From: Zeyuan Chen [view email][v1] Thu, 10 Aug 2023 06:52:53 UTC (198 KB)
[v2] Mon, 14 Aug 2023 09:49:21 UTC (198 KB)
[v3] Wed, 16 Aug 2023 03:59:23 UTC (148 KB)
[v4] Tue, 24 Oct 2023 08:49:01 UTC (198 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.