Computer Science > Machine Learning
[Submitted on 30 Jul 2023 (v1), last revised 13 Jan 2024 (this version, v3)]
Title:A Novel DDPM-based Ensemble Approach for Energy Theft Detection in Smart Grids
View PDF HTML (experimental)Abstract:Energy theft, characterized by manipulating energy consumption readings to reduce payments, poses a dual threat-causing financial losses for grid operators and undermining the performance of smart grids. Effective Energy Theft Detection (ETD) methods become crucial in mitigating these risks by identifying such fraudulent activities in their early stages. However, the majority of current ETD methods rely on supervised learning, which is hindered by the difficulty of labelling data and the risk of overfitting known attacks. To address these challenges, several unsupervised ETD methods have been proposed, focusing on learning the normal patterns from honest users, specifically the reconstruction of input. However, our investigation reveals a limitation in current unsupervised ETD methods, as they can only detect anomalous behaviours in users exhibiting regular patterns. Users with high-variance behaviours pose a challenge to these methods. In response, this paper introduces a Denoising Diffusion Probabilistic Model (DDPM)-based ETD approach. This innovative approach demonstrates impressive ETD performance on high-variance smart grid data by incorporating additional attributes correlated with energy consumption. The proposed methods improve the average ETD performance on high-variance smart grid data from below 0.5 to over 0.9 w.r.t. AUC. On the other hand, our experimental findings indicate that while the state-of-the-art ETD methods based on reconstruction error can identify ETD attacks for the majority of users, they prove ineffective in detecting attacks for certain users. To address this, we propose a novel ensemble approach that considers both reconstruction error and forecasting error, enhancing the robustness of the ETD methodology. The proposed ensemble method improves the average ETD performance on the stealthiest attacks from nearly 0 to 0.5 w.r.t. 5%-TPR.
Submission history
From: Xun Yuan [view email][v1] Sun, 30 Jul 2023 07:16:56 UTC (10,984 KB)
[v2] Thu, 3 Aug 2023 07:00:53 UTC (10,984 KB)
[v3] Sat, 13 Jan 2024 08:00:03 UTC (12,220 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.