Computer Science > Human-Computer Interaction
[Submitted on 27 Jul 2023]
Title:Taken By Surprise? Evaluating how Bayesian Weighting Influences Peoples' Takeaways in Map Visualizations
View PDFAbstract:Choropleth maps have been studied and extended in many ways to counteract the many biases that can occur when using them. Two recent techniques, Surprise metrics and Value Suppressing Uncertainty Palettes (VSUPs), offer promising solutions but have yet to be tested empirically with users of visualizations. In this paper, we explore how well people can make use of these techniques in map exploration tasks. We report a crowdsourced experiment where n = 300 participants are assigned to one of Choropleth, Surprise (only), and VSUP conditions (depicting rates and Surprise in a suppressed palette). Results show clear differences in map analysis outcomes, e.g. with Surprise maps leading people to significantly higher areas of population, or VSUPs performing similar or better than Choropleths for rate selection. Qualitative analysis suggests that many participants may only consider a subset of the metrics presented to them during exploration and decision-making. We discuss how these results generally support the use of Surprise and VSUP techniques in practice, and opportunities for further technique development. The material for the study (data, study results and code) is publicly available on this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.