Computer Science > Social and Information Networks
[Submitted on 19 Jul 2023]
Title:Are you in a Masquerade? Exploring the Behavior and Impact of Large Language Model Driven Social Bots in Online Social Networks
View PDFAbstract:As the capabilities of Large Language Models (LLMs) emerge, they not only assist in accomplishing traditional tasks within more efficient paradigms but also stimulate the evolution of social bots. Researchers have begun exploring the implementation of LLMs as the driving core of social bots, enabling more efficient and user-friendly completion of tasks like profile completion, social behavior decision-making, and social content generation. However, there is currently a lack of systematic research on the behavioral characteristics of LLMs-driven social bots and their impact on social networks. We have curated data from Chirper, a Twitter-like social network populated by LLMs-driven social bots and embarked on an exploratory study. Our findings indicate that: (1) LLMs-driven social bots possess enhanced individual-level camouflage while exhibiting certain collective characteristics; (2) these bots have the ability to exert influence on online communities through toxic behaviors; (3) existing detection methods are applicable to the activity environment of LLMs-driven social bots but may be subject to certain limitations in effectiveness. Moreover, we have organized the data collected in our study into the Masquerade-23 dataset, which we have publicly released, thus addressing the data void in the subfield of LLMs-driven social bots behavior datasets. Our research outcomes provide primary insights for the research and governance of LLMs-driven social bots within the research community.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.