Computer Science > Formal Languages and Automata Theory
[Submitted on 14 Jul 2023 (v1), last revised 1 Aug 2023 (this version, v2)]
Title:Priority Downward Closures
View PDFAbstract:When a system sends messages through a lossy channel, then the language encoding all sequences of messages can be abstracted by its downward closure, i.e. the set of all (not necessarily contiguous) subwords. This is useful because even if the system has infinitely many states, its downward closure is a regular language. However, if the channel has congestion control based on priorities assigned to the messages, then we need a finer abstraction: The downward closure with respect to the priority embedding. As for subword-based downward closures, one can also show that these priority downward closures are always regular.
While computing finite automata for the subword-based downward closure is well understood, nothing is known in the case of priorities. We initiate the study of this problem and provide algorithms to compute priority downward closures for regular languages, one-counter languages, and context-free languages.
Submission history
From: Ashwani Anand [view email][v1] Fri, 14 Jul 2023 16:38:52 UTC (285 KB)
[v2] Tue, 1 Aug 2023 13:28:06 UTC (285 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.