Computer Science > Machine Learning
[Submitted on 9 Jul 2023]
Title:Investigating the Edge of Stability Phenomenon in Reinforcement Learning
View PDFAbstract:Recent progress has been made in understanding optimisation dynamics in neural networks trained with full-batch gradient descent with momentum with the uncovering of the edge of stability phenomenon in supervised learning. The edge of stability phenomenon occurs as the leading eigenvalue of the Hessian reaches the divergence threshold of the underlying optimisation algorithm for a quadratic loss, after which it starts oscillating around the threshold, and the loss starts to exhibit local instability but decreases over long time frames. In this work, we explore the edge of stability phenomenon in reinforcement learning (RL), specifically off-policy Q-learning algorithms across a variety of data regimes, from offline to online RL. Our experiments reveal that, despite significant differences to supervised learning, such as non-stationarity of the data distribution and the use of bootstrapping, the edge of stability phenomenon can be present in off-policy deep RL. Unlike supervised learning, however, we observe strong differences depending on the underlying loss, with DQN -- using a Huber loss -- showing a strong edge of stability effect that we do not observe with C51 -- using a cross entropy loss. Our results suggest that, while neural network structure can lead to optimisation dynamics that transfer between problem domains, certain aspects of deep RL optimisation can differentiate it from domains such as supervised learning.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.