Computer Science > Digital Libraries
[Submitted on 23 May 2023]
Title:Evaluating the Efficacy of ChatGPT-4 in Providing Scientific References across Diverse Disciplines
View PDFAbstract:This work conducts a comprehensive exploration into the proficiency of OpenAI's ChatGPT-4 in sourcing scientific references within an array of research disciplines. Our in-depth analysis encompasses a wide scope of fields including Computer Science (CS), Mechanical Engineering (ME), Electrical Engineering (EE), Biomedical Engineering (BME), and Medicine, as well as their more specialized sub-domains. Our empirical findings indicate a significant variance in ChatGPT-4's performance across these disciplines. Notably, the validity rate of suggested articles in CS, BME, and Medicine surpasses 65%, whereas in the realms of ME and EE, the model fails to verify any article as valid. Further, in the context of retrieving articles pertinent to niche research topics, ChatGPT-4 tends to yield references that align with the broader thematic areas as opposed to the narrowly defined topics of interest. This observed disparity underscores the pronounced variability in accuracy across diverse research fields, indicating the potential requirement for model refinement to enhance its functionality in academic research. Our investigation offers valuable insights into the current capacities and limitations of AI-powered tools in scholarly research, thereby emphasizing the indispensable role of human oversight and rigorous validation in leveraging such models for academic pursuits.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.