Computer Science > Data Structures and Algorithms
[Submitted on 9 Jun 2023 (v1), last revised 19 Aug 2024 (this version, v2)]
Title:Space-time Trade-offs for the LCP Array of Wheeler DFAs
View PDF HTML (experimental)Abstract:Recently, Conte et al. generalized the longest-common prefix (LCP) array from strings to Wheeler DFAs, and they showed that it can be used to efficiently determine matching statistics on a Wheeler DFA [DCC 2023]. However, storing the LCP array requires $ O(n \log n) $ bits, $ n $ being the number of states, while the compact representation of Wheeler DFAs often requires much less space. In particular, the BOSS representation of a de Bruijn graph only requires a linear number of bits, if the size of alphabet is constant.
In this paper, we propose a sampling technique that allows to access an entry of the LCP array in logarithmic time by only storing a linear number of bits. We use our technique to provide a space-time trade-off to compute matching statistics on a Wheeler DFA. In addition, we show that by augmenting the BOSS representation of a $ k $-th order de Bruijn graph with a linear number of bits we can navigate the underlying variable-order de Bruijn graph in time logarithmic in $ k $, thus improving a previous bound by Boucher et al. which was linear in $ k $ [DCC 2015].
Submission history
From: Nicola Prezza [view email][v1] Fri, 9 Jun 2023 05:53:49 UTC (32 KB)
[v2] Mon, 19 Aug 2024 09:17:57 UTC (32 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.