Computer Science > Artificial Intelligence
[Submitted on 8 Jun 2023]
Title:A Rapid Review of Responsible AI frameworks: How to guide the development of ethical AI
View PDFAbstract:In the last years, the raise of Artificial Intelligence (AI), and its pervasiveness in our lives, has sparked a flourishing debate about the ethical principles that should lead its implementation and use in society. Driven by these concerns, we conduct a rapid review of several frameworks providing principles, guidelines, and/or tools to help practitioners in the development and deployment of Responsible AI (RAI) applications. We map each framework w.r.t. the different Software Development Life Cycle (SDLC) phases discovering that most of these frameworks fall just in the Requirements Elicitation phase, leaving the other phases uncovered. Very few of these frameworks offer supporting tools for practitioners, and they are mainly provided by private companies. Our results reveal that there is not a "catching-all" framework supporting both technical and non-technical stakeholders in the implementation of real-world projects. Our findings highlight the lack of a comprehensive framework encompassing all RAI principles and all (SDLC) phases that could be navigated by users with different skill sets and with different goals.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.