Computer Science > Computer Vision and Pattern Recognition
[Submitted on 1 Jun 2023 (v1), last revised 27 Feb 2025 (this version, v3)]
Title:GPT4Image: Large Pre-trained Models Help Vision Models Learn Better on Perception Task
View PDF HTML (experimental)Abstract:The upsurge in pre-trained large models started by ChatGPT has swept across the entire deep learning community. Such powerful models demonstrate advanced generative ability and multimodal understanding capability, which quickly set new state of the arts on a variety of benchmarks. The pre-trained LLM usually plays the role as a universal AI model that can conduct various tasks like article analysis and image comprehension. However, due to the prohibitively high memory and computational cost of implementing such a large model, the conventional models (such as CNN and ViT) are still essential for many visual perception tasks. In this paper, we propose to enhance the representation ability of ordinary vision models on perception tasks (e.g. image classification) by taking advantage of the off-the-shelf large pre-trained models. We present a new learning framework, dubbed GPT4Image, where the knowledge of the large pre-trained models are extracted to help CNNs and ViTs learn better representations and achieve higher performance. Firstly, we curate a high quality description set by prompting a multimodal LLM to generate descriptions for training images. Then, these detailed descriptions are fed into a pre-trained encoder to extract text embeddings that encodes the rich semantics of images. During training, text embeddings will serve as extra supervising signal and be aligned with image representations learned by vision models. The alignment process helps vision models achieve better performance with the aid of pre-trained LLMs. We conduct extensive experiments to verify the effectiveness of the proposed algorithm on various visual perception tasks for heterogeneous model architectures.
Submission history
From: Ning Ding [view email][v1] Thu, 1 Jun 2023 14:02:45 UTC (1,340 KB)
[v2] Wed, 7 Jun 2023 13:59:25 UTC (1,340 KB)
[v3] Thu, 27 Feb 2025 12:49:05 UTC (5,127 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.