Mathematics > Numerical Analysis
[Submitted on 1 Jun 2023 (v1), last revised 30 Mar 2024 (this version, v3)]
Title:NLTGCR: A class of Nonlinear Acceleration Procedures based on Conjugate Residuals
View PDF HTML (experimental)Abstract:This paper develops a new class of nonlinear acceleration algorithms based on extending conjugate residual-type procedures from linear to nonlinear equations. The main algorithm has strong similarities with Anderson acceleration as well as with inexact Newton methods - depending on which variant is implemented. We prove theoretically and verify experimentally, on a variety of problems from simulation experiments to deep learning applications, that our method is a powerful accelerated iterative algorithm.
Submission history
From: Huan He [view email][v1] Thu, 1 Jun 2023 03:58:57 UTC (6,700 KB)
[v2] Sun, 6 Aug 2023 21:23:59 UTC (6,352 KB)
[v3] Sat, 30 Mar 2024 06:46:44 UTC (6,053 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.