Computer Science > Networking and Internet Architecture
[Submitted on 30 May 2023]
Title:How Generative Models Improve LOS Estimation in 6G Non-Terrestrial Networks
View PDFAbstract:With the advent of 5G and the anticipated arrival of 6G, there has been a growing research interest in combining mobile networks with Non-Terrestrial Network platforms such as low earth orbit satellites and Geosynchronous Equatorial Orbit satellites to provide broader coverage for a wide range of applications. However, integrating these platforms is challenging because Line-Of-Sight (LOS) estimation is required for both inter satellite and satellite-to-terrestrial segment links. Machine Learning (ML) techniques have shown promise in channel modeling and LOS estimation, but they require large datasets for model training, which can be difficult to obtain. In addition, network operators may be reluctant to disclose their network data due to privacy concerns. Therefore, alternative data collection techniques are needed. In this paper, a framework is proposed that uses generative models to generate synthetic data for LOS estimation in non-terrestrial 6G networks. Specifically, the authors show that generative models can be trained with a small available dataset to generate large datasets that can be used to train ML models for LOS estimation. Furthermore, since the generated synthetic data does not contain identifying information of the original dataset, it can be made publicly available without violating privacy
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.