Computer Science > Computation and Language
[Submitted on 29 May 2023]
Title:Extrinsic Factors Affecting the Accuracy of Biomedical NER
View PDFAbstract:Biomedical named entity recognition (NER) is a critial task that aims to identify structured information in clinical text, which is often replete with complex, technical terms and a high degree of variability. Accurate and reliable NER can facilitate the extraction and analysis of important biomedical information, which can be used to improve downstream applications including the healthcare system. However, NER in the biomedical domain is challenging due to limited data availability, as the high expertise, time, and expenses are required to annotate its data. In this paper, by using the limited data, we explore various extrinsic factors including the corpus annotation scheme, data augmentation techniques, semi-supervised learning and Brill transformation, to improve the performance of a NER model on a clinical text dataset (i2b2 2012, \citet{sun-rumshisky-uzuner:2013}). Our experiments demonstrate that these approaches can significantly improve the model's F1 score from original 73.74 to 77.55. Our findings suggest that considering different extrinsic factors and combining these techniques is a promising approach for improving NER performance in the biomedical domain where the size of data is limited.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.