Computer Science > Machine Learning
[Submitted on 22 May 2023]
Title:Faster Differentially Private Convex Optimization via Second-Order Methods
View PDFAbstract:Differentially private (stochastic) gradient descent is the workhorse of DP private machine learning in both the convex and non-convex settings. Without privacy constraints, second-order methods, like Newton's method, converge faster than first-order methods like gradient descent. In this work, we investigate the prospect of using the second-order information from the loss function to accelerate DP convex optimization. We first develop a private variant of the regularized cubic Newton method of Nesterov and Polyak, and show that for the class of strongly convex loss functions, our algorithm has quadratic convergence and achieves the optimal excess loss. We then design a practical second-order DP algorithm for the unconstrained logistic regression problem. We theoretically and empirically study the performance of our algorithm. Empirical results show our algorithm consistently achieves the best excess loss compared to other baselines and is 10-40x faster than DP-GD/DP-SGD.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.