close this message
arXiv smileybones

Happy Birthday to arXiv!

It's our birthday — woohoo! On August 14th, 1991, the very first paper was submitted to arXiv. That's 34 years of open science! Give today and help support arXiv for many birthdays to come.

Give a gift!
Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate
arxiv logo > eess > arXiv:2305.11728

Help | Advanced Search

arXiv logo
Cornell University Logo

quick links

  • Login
  • Help Pages
  • About

Electrical Engineering and Systems Science > Image and Video Processing

arXiv:2305.11728 (eess)
[Submitted on 19 May 2023]

Title:Towards More Transparent and Accurate Cancer Diagnosis with an Unsupervised CAE Approach

Authors:Zahra Tabatabaei, Adrian Colomer, Javier Oliver Moll, Valery Naranjo
View a PDF of the paper titled Towards More Transparent and Accurate Cancer Diagnosis with an Unsupervised CAE Approach, by Zahra Tabatabaei and 3 other authors
View PDF
Abstract:Digital pathology has revolutionized cancer diagnosis by leveraging Content-Based Medical Image Retrieval (CBMIR) for analyzing histopathological Whole Slide Images (WSIs). CBMIR enables searching for similar content, enhancing diagnostic reliability and accuracy. In 2020, breast and prostate cancer constituted 11.7% and 14.1% of cases, respectively, as reported by the Global Cancer Observatory (GCO). The proposed Unsupervised CBMIR (UCBMIR) replicates the traditional cancer diagnosis workflow, offering a dependable method to support pathologists in WSI-based diagnostic conclusions. This approach alleviates pathologists' workload, potentially enhancing diagnostic efficiency. To address the challenge of the lack of labeled histopathological images in CBMIR, a customized unsupervised Convolutional Auto Encoder (CAE) was developed, extracting 200 features per image for the search engine component. UCBMIR was evaluated using widely-used numerical techniques in CBMIR, alongside visual evaluation and comparison with a classifier. The validation involved three distinct datasets, with an external evaluation demonstrating its effectiveness. UCBMIR outperformed previous studies, achieving a top 5 recall of 99% and 80% on BreaKHis and SICAPv2, respectively, using the first evaluation technique. Precision rates of 91% and 70% were achieved for BreaKHis and SICAPv2, respectively, using the second evaluation technique. Furthermore, UCBMIR demonstrated the capability to identify various patterns in patches, achieving an 81% accuracy in the top 5 when tested on an external image from Arvaniti.
Comments: this paper is under review in Scientific reports
Subjects: Image and Video Processing (eess.IV); Computer Vision and Pattern Recognition (cs.CV)
Cite as: arXiv:2305.11728 [eess.IV]
  (or arXiv:2305.11728v1 [eess.IV] for this version)
  https://doi.org/10.48550/arXiv.2305.11728
arXiv-issued DOI via DataCite
Journal reference: IEEE Access ( Volume: 11)2023
Related DOI: https://doi.org/10.1109/ACCESS.2023.3343845
DOI(s) linking to related resources

Submission history

From: Zahra Tabatabaei [view email]
[v1] Fri, 19 May 2023 15:04:16 UTC (9,442 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled Towards More Transparent and Accurate Cancer Diagnosis with an Unsupervised CAE Approach, by Zahra Tabatabaei and 3 other authors
  • View PDF
  • TeX Source
  • Other Formats
license icon view license
Current browse context:
eess.IV
< prev   |   next >
new | recent | 2023-05
Change to browse by:
cs
cs.CV
eess

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack