Computer Science > Sound
[Submitted on 19 May 2023]
Title:Sensing of inspiration events from speech: comparison of deep learning and linguistic methods
View PDFAbstract:Respiratory chest belt sensor can be used to measure the respiratory rate and other respiratory health parameters. Virtual Respiratory Belt, VRB, algorithms estimate the belt sensor waveform from speech audio. In this paper we compare the detection of inspiration events (IE) from respiratory belt sensor data using a novel neural VRB algorithm and the detections based on time-aligned linguistic content. The results show the superiority of the VRB method over word pause detection or grammatical content segmentation. The comparison of the methods show that both read and spontaneous speech content has a significant amount of ungrammatical breathing, that is, breathing events that are not aligned with grammatically appropriate places in language. This study gives new insights into the development of VRB methods and adds to the general understanding of speech breathing behavior. Moreover, a new VRB method, VRBOLA, for the reconstruction of the continuous breathing waveform is demonstrated.
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.