Computer Science > Computation and Language
[Submitted on 13 May 2023]
Title:Frequency-aware Dimension Selection for Static Word Embedding by Mixed Product Distance
View PDFAbstract:Static word embedding is still useful, particularly for context-unavailable tasks, because in the case of no context available, pre-trained language models often perform worse than static word embeddings. Although dimension is a key factor determining the quality of static word embeddings, automatic dimension selection is rarely discussed. In this paper, we investigate the impact of word frequency on the dimension selection, and empirically find that word frequency is so vital that it needs to be taken into account during dimension selection. Based on such an empirical finding, this paper proposes a dimension selection method that uses a metric (Mixed Product Distance, MPD) to select a proper dimension for word embedding algorithms without training any word embedding. Through applying a post-processing function to oracle matrices, the MPD-based method can de-emphasize the impact of word frequency. Experiments on both context-unavailable and context-available tasks demonstrate the better efficiency-performance trade-off of our MPD-based dimension selection method over baselines.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.