Computer Science > Software Engineering
[Submitted on 1 May 2023 (v1), last revised 16 Feb 2024 (this version, v2)]
Title:Redundancy and Concept Analysis for Code-trained Language Models
View PDF HTML (experimental)Abstract:Code-trained language models have proven to be highly effective for various code intelligence tasks. However, they can be challenging to train and deploy for many software engineering applications due to computational bottlenecks and memory constraints. Implementing effective strategies to address these issues requires a better understanding of these 'black box' models. In this paper, we perform the first neuron-level analysis for source code models to identify \textit{important} neurons within latent representations. We achieve this by eliminating neurons that are highly similar or irrelevant to the given task. This approach helps us understand which neurons and layers can be eliminated (redundancy analysis) and where important code properties are located within the network (concept analysis). Using redundancy analysis, we make observations relevant to knowledge transfer and model optimization applications. We find that over 95\% of the neurons are redundant with respect to our code intelligence tasks and can be eliminated without significant loss in accuracy. We also discover several subsets of neurons that can make predictions with baseline accuracy. Through concept analysis, we explore the traceability and distribution of human-recognizable concepts within latent code representations which could be used to influence model predictions. We trace individual and subsets of important neurons to specific code properties and identify 'number' neurons, 'string' neurons, and higher-level 'text' neurons for token-level tasks and higher-level concepts important for sentence-level downstream tasks. This also helps us understand how decomposable and transferable task-related features are and can help devise better techniques for transfer learning, model compression, and the decomposition of deep neural networks into modules.
Submission history
From: Arushi Sharma [view email][v1] Mon, 1 May 2023 15:22:41 UTC (1,152 KB)
[v2] Fri, 16 Feb 2024 04:21:53 UTC (2,507 KB)
Current browse context:
cs.SE
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.