Computer Science > Information Retrieval
[Submitted on 25 Apr 2023]
Title:Explain like I am BM25: Interpreting a Dense Model's Ranked-List with a Sparse Approximation
View PDFAbstract:Neural retrieval models (NRMs) have been shown to outperform their statistical counterparts owing to their ability to capture semantic meaning via dense document representations. These models, however, suffer from poor interpretability as they do not rely on explicit term matching. As a form of local per-query explanations, we introduce the notion of equivalent queries that are generated by maximizing the similarity between the NRM's results and the result set of a sparse retrieval system with the equivalent query. We then compare this approach with existing methods such as RM3-based query expansion and contrast differences in retrieval effectiveness and in the terms generated by each approach.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.