Computer Science > Artificial Intelligence
[Submitted on 12 Apr 2023]
Title:Meta-Learned Models of Cognition
View PDFAbstract:Meta-learning is a framework for learning learning algorithms through repeated interactions with an environment as opposed to designing them by hand. In recent years, this framework has established itself as a promising tool for building models of human cognition. Yet, a coherent research program around meta-learned models of cognition is still missing. The purpose of this article is to synthesize previous work in this field and establish such a research program. We rely on three key pillars to accomplish this goal. We first point out that meta-learning can be used to construct Bayes-optimal learning algorithms. This result not only implies that any behavioral phenomenon that can be explained by a Bayesian model can also be explained by a meta-learned model but also allows us to draw strong connections to the rational analysis of cognition. We then discuss several advantages of the meta-learning framework over traditional Bayesian methods. In particular, we argue that meta-learning can be applied to situations where Bayesian inference is impossible and that it enables us to make rational models of cognition more realistic, either by incorporating limited computational resources or neuroscientific knowledge. Finally, we reexamine prior studies from psychology and neuroscience that have applied meta-learning and put them into the context of these new insights. In summary, our work highlights that meta-learning considerably extends the scope of rational analysis and thereby of cognitive theories more generally.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.