Statistics > Methodology
[Submitted on 27 Mar 2023]
Title:Model-free screening procedure for ultrahigh-dimensional survival data based on Hilbert-Schmidt independence criterion
View PDFAbstract:How to select the active variables which have significant impact on the event of interest is a very important and meaningful problem in the statistical analysis of ultrahigh-dimensional data. Sure independent screening procedure has been demonstrated to be an effective method to reduce the dimensionality of data from a large scale to a relatively moderate scale. For censored survival data, the existing screening methods mainly adopt the Kaplan--Meier estimator to handle censoring, which may not perform well for scenarios which have heavy censoring rate. In this article, we propose a model-free screening procedure based on the Hilbert-Schmidt independence criterion (HSIC). The proposed method avoids the complication to specify an actual model from a large number of covariates. Compared with existing screening procedures, this new approach has several advantages. First, it does not involve the Kaplan--Meier estimator, thus its performance is much more robust for the cases with a heavy censoring rate. Second, the empirical estimate of HSIC is very simple as it just depends on the trace of a product of Gram matrices. In addition, the proposed procedure does not require any complicated numerical optimization, so the corresponding calculation is very simple and fast. Finally, the proposed procedure which employs the kernel method is substantially more resistant to outliers. Extensive simulation studies demonstrate that the proposed method has favorable exhibition over the existing methods. As an illustration, we apply the proposed method to analyze the diffuse large-B-cell lymphoma (DLBCL) data and the ovarian cancer data.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.