Computer Science > Computer Vision and Pattern Recognition
[Submitted on 21 Mar 2023]
Title:Self-Paced Neutral Expression-Disentangled Learning for Facial Expression Recognition
View PDFAbstract:The accuracy of facial expression recognition is typically affected by the following factors: high similarities across different expressions, disturbing factors, and micro-facial movement of rapid and subtle changes. One potentially viable solution for addressing these barriers is to exploit the neutral information concealed in neutral expression images. To this end, in this paper we propose a self-Paced Neutral Expression-Disentangled Learning (SPNDL) model. SPNDL disentangles neutral information from facial expressions, making it easier to extract key and deviation features. Specifically, it allows to capture discriminative information among similar expressions and perceive micro-facial movements. In order to better learn these neutral expression-disentangled features (NDFs) and to alleviate the non-convex optimization problem, a self-paced learning (SPL) strategy based on NDFs is proposed in the training stage. SPL learns samples from easy to complex by increasing the number of samples selected into the training process, which enables to effectively suppress the negative impacts introduced by low-quality samples and inconsistently distributed NDFs. Experiments on three popular databases (i.e., CK+, Oulu-CASIA, and RAF-DB) show the effectiveness of our proposed method.
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.