Computer Science > Machine Learning
[Submitted on 16 Mar 2023]
Title:Reinforcement Learning for Omega-Regular Specifications on Continuous-Time MDP
View PDFAbstract:Continuous-time Markov decision processes (CTMDPs) are canonical models to express sequential decision-making under dense-time and stochastic environments. When the stochastic evolution of the environment is only available via sampling, model-free reinforcement learning (RL) is the algorithm-of-choice to compute optimal decision sequence. RL, on the other hand, requires the learning objective to be encoded as scalar reward signals. Since doing such translations manually is both tedious and error-prone, a number of techniques have been proposed to translate high-level objectives (expressed in logic or automata formalism) to scalar rewards for discrete-time Markov decision processes (MDPs). Unfortunately, no automatic translation exists for CTMDPs.
We consider CTMDP environments against the learning objectives expressed as omega-regular languages. Omega-regular languages generalize regular languages to infinite-horizon specifications and can express properties given in popular linear-time logic LTL. To accommodate the dense-time nature of CTMDPs, we consider two different semantics of omega-regular objectives: 1) satisfaction semantics where the goal of the learner is to maximize the probability of spending positive time in the good states, and 2) expectation semantics where the goal of the learner is to optimize the long-run expected average time spent in the ``good states" of the automaton. We present an approach enabling correct translation to scalar reward signals that can be readily used by off-the-shelf RL algorithms for CTMDPs. We demonstrate the effectiveness of the proposed algorithms by evaluating it on some popular CTMDP benchmarks with omega-regular objectives.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.