Computer Science > Computer Vision and Pattern Recognition
[Submitted on 13 Mar 2023]
Title:Contextually-rich human affect perception using multimodal scene information
View PDFAbstract:The process of human affect understanding involves the ability to infer person specific emotional states from various sources including images, speech, and language. Affect perception from images has predominantly focused on expressions extracted from salient face crops. However, emotions perceived by humans rely on multiple contextual cues including social settings, foreground interactions, and ambient visual scenes. In this work, we leverage pretrained vision-language (VLN) models to extract descriptions of foreground context from images. Further, we propose a multimodal context fusion (MCF) module to combine foreground cues with the visual scene and person-based contextual information for emotion prediction. We show the effectiveness of our proposed modular design on two datasets associated with natural scenes and TV shows.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.