Computer Science > Computer Vision and Pattern Recognition
[Submitted on 7 Mar 2023]
Title:A Light-Weight Contrastive Approach for Aligning Human Pose Sequences
View PDFAbstract:We present a simple unsupervised method for learning an encoder mapping short 3D pose sequences into embedding vectors suitable for sequence-to-sequence alignment by dynamic time warping. Training samples consist of temporal windows of frames containing 3D body points such as mocap markers or skeleton joints. A light-weight, 3-layer encoder is trained using a contrastive loss function that encourages embedding vectors of augmented sample pairs to have cosine similarity 1, and similarity 0 with all other samples in a minibatch. When multiple scripted training sequences are available, temporal alignments inferred from an initial round of training are harvested to extract additional, cross-performance match pairs for a second phase of training to refine the encoder. In addition to being simple, the proposed method is fast to train, making it easy to adapt to new data using different marker sets or skeletal joint layouts. Experimental results illustrate ease of use, transferability, and utility of the learned embeddings for comparing and analyzing human behavior sequences.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.