Computer Science > Software Engineering
[Submitted on 2 Mar 2023]
Title:Reasoning-Based Software Testing
View PDFAbstract:With software systems becoming increasingly pervasive and autonomous, our ability to test for their quality is severely challenged. Many systems are called to operate in uncertain and highly-changing environment, not rarely required to make intelligent decisions by themselves. This easily results in an intractable state space to explore at testing time. The state-of-the-art techniques try to keep the pace, e.g., by augmenting the tester's intuition with some form of (explicit or implicit) learning from observations to search this space efficiently. For instance, they exploit historical data to drive the search (e.g., ML-driven testing) or the tests execution data itself (e.g., adaptive or search-based testing). Despite the indubitable advances, the need for smartening the search in such a huge space keeps to be pressing.
We introduce Reasoning-Based Software Testing (RBST), a new way of thinking at the testing problem as a causal reasoning task. Compared to mere intuition-based or state-of-the-art learning-based strategies, we claim that causal reasoning more naturally emulates the process that a human would do to ''smartly" search the space. RBST aims to mimic and amplify, with the power of computation, this ability. The conceptual leap can pave the ground to a new trend of techniques, which can be variously instantiated from the proposed framework, by exploiting the numerous tools for causal discovery and inference. Preliminary results reported in this paper are promising.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.