Computer Science > Computer Vision and Pattern Recognition
[Submitted on 26 Feb 2023 (v1), last revised 15 Oct 2023 (this version, v2)]
Title:Localizing Moments in Long Video Via Multimodal Guidance
View PDFAbstract:The recent introduction of the large-scale, long-form MAD and Ego4D datasets has enabled researchers to investigate the performance of current state-of-the-art methods for video grounding in the long-form setup, with interesting findings: current grounding methods alone fail at tackling this challenging task and setup due to their inability to process long video sequences. In this paper, we propose a method for improving the performance of natural language grounding in long videos by identifying and pruning out non-describable windows. We design a guided grounding framework consisting of a Guidance Model and a base grounding model. The Guidance Model emphasizes describable windows, while the base grounding model analyzes short temporal windows to determine which segments accurately match a given language query. We offer two designs for the Guidance Model: Query-Agnostic and Query-Dependent, which balance efficiency and accuracy. Experiments demonstrate that our proposed method outperforms state-of-the-art models by 4.1% in MAD and 4.52% in Ego4D (NLQ), respectively. Code, data and MAD's audio features necessary to reproduce our experiments are available at: this https URL.
Submission history
From: Wayner Barrios [view email][v1] Sun, 26 Feb 2023 18:19:24 UTC (3,910 KB)
[v2] Sun, 15 Oct 2023 13:48:59 UTC (7,422 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.