Computer Science > Information Theory
[Submitted on 23 Feb 2023]
Title:Irregular Repetition Slotted ALOHA Over the Binary Adder Channel
View PDFAbstract:We propose an irregular repetition slotted ALOHA (IRSA) based random-access protocol for the binary adder channel (BAC). The BAC captures important physical-layer concepts, such as packet generation, per-slot decoding, and information rate, which are neglected in the commonly considered collision channel model. We divide a frame into slots and let users generate a packet, to be transmitted over a slot, from a given codebook. In a state-of-the-art scheme proposed by Paolini et al. (2022), the codebook is constructed as the parity-check matrix of a BCH code. Here, we construct the codebook from independent and identically distributed binary symbols to obtain a random-coding achievability bound. Our per-slot decoder progressively discards incompatible codewords from a list of candidate codewords, and can be improved by shrinking this list across iterations. In a regime of practical interests, our scheme can resolve more colliding users in a slot and thus achieves a higher average sum rate than the scheme in Paolini et al. (2022).
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.