Mathematics > Numerical Analysis
[Submitted on 18 Feb 2023]
Title:Solving Boltzmann equation with neural sparse representation
View PDFAbstract:We consider the neural sparse representation to solve Boltzmann equation with BGK and quadratic collision model, where a network-based ansatz that can approximate the distribution function with extremely high efficiency is proposed. Precisely, fully connected neural networks are employed in the time and spatial space so as to avoid the discretization in space and time. The different low-rank representations are utilized in the microscopic velocity for the BGK and quadratic collision model, resulting in a significant reduction in the degree of freedom. We approximate the discrete velocity distribution in the BGK model using the canonical polyadic decomposition. For the quadratic collision model, a data-driven, SVD-based linear basis is built based on the BGK solution. All these will significantly improve the efficiency of the network when solving Boltzmann equation. Moreover, the specially designed adaptive-weight loss function is proposed with the strategies as multi-scale input and Maxwellian splitting applied to further enhance the approximation efficiency and speed up the learning process. Several numerical experiments, including 1D wave and Sod problems and 2D wave problem, demonstrate the effectiveness of these neural sparse representation methods.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.