Computer Science > Machine Learning
[Submitted on 12 Feb 2023 (v1), last revised 26 Mar 2023 (this version, v2)]
Title:Review of Extreme Multilabel Classification
View PDFAbstract:Extreme multilabel classification or XML, is an active area of interest in machine learning. Compared to traditional multilabel classification, here the number of labels is extremely large, hence, the name extreme multilabel classification. Using classical one versus all classification wont scale in this case due to large number of labels, same is true for any other classifiers. Embedding of labels as well as features into smaller label space is an essential first step. Moreover, other issues include existence of head and tail labels, where tail labels are labels which exist in relatively smaller number of given samples. The existence of tail labels creates issues during embedding. This area has invited application of wide range of approaches ranging from bit compression motivated from compressed sensing, tree based embeddings, deep learning based latent space embedding including using attention weights, linear algebra based embeddings such as SVD, clustering, hashing, to name a few. The community has come up with a useful set of metrics to identify correctly the prediction for head or tail labels.
Submission history
From: Pawan Kumar [view email][v1] Sun, 12 Feb 2023 18:29:20 UTC (4,168 KB)
[v2] Sun, 26 Mar 2023 19:39:59 UTC (4,168 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.