Computer Science > Computer Vision and Pattern Recognition
[Submitted on 12 Jan 2023]
Title:Semantic Segmentation via Pixel-to-Center Similarity Calculation
View PDFAbstract:Since the fully convolutional network has achieved great success in semantic segmentation, lots of works have been proposed focusing on extracting discriminative pixel feature representations. However, we observe that existing methods still suffer from two typical challenges, i.e. (i) large intra-class feature variation in different scenes, (ii) small inter-class feature distinction in the same scene. In this paper, we first rethink semantic segmentation from a perspective of similarity between pixels and class centers. Each weight vector of the segmentation head represents its corresponding semantic class in the whole dataset, which can be regarded as the embedding of the class center. Thus, the pixel-wise classification amounts to computing similarity in the final feature space between pixels and the class centers. Under this novel view, we propose a Class Center Similarity layer (CCS layer) to address the above-mentioned challenges by generating adaptive class centers conditioned on different scenes and supervising the similarities between class centers. It utilizes a Adaptive Class Center Module (ACCM) to generate class centers conditioned on each scene, which adapt the large intra-class variation between different scenes. Specially designed loss functions are introduced to control both inter-class and intra-class distances based on predicted center-to-center and pixel-to-center similarity, respectively. Finally, the CCS layer outputs the processed pixel-to-center similarity as the segmentation prediction. Extensive experiments demonstrate that our model performs favourably against the state-of-the-art CNN-based methods.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.