Computer Science > Cryptography and Security
[Submitted on 7 Dec 2022]
Title:Green Bitcoin: Global Sound Money
View PDFAbstract:Modern societies have adopted government-issued fiat currencies many of which exist today mainly in the form of digits in credit and bank accounts. Fiat currencies are controlled by central banks for economic stimulation and stabilization. Boom-and-bust cycles are created. The volatility of the cycle has become increasingly extreme. Social inequality due to the concentration of wealth is prevalent worldwide. As such, restoring sound money, which provides stored value over time, has become a pressing issue. Currently, cryptocurrencies such as Bitcoin are in their infancy and may someday qualify as sound money. Bitcoin today is considered as a digital asset for storing value. But Bitcoin has problems. The first issue of the current Bitcoin network is its high energy consumption consensus mechanism. The second is the cryptographic primitives which are unsafe against post-quantum (PQ) attacks. We aim to propose Green Bitcoin which addresses both issues. To save energy in consensus mechanism, we introduce a post-quantum secure (self-election) verifiable coin-toss function and novel PQ secure proof-of-computation primitives. It is expected to reduce the rate of energy consumption more than 90 percent of the current Bitcoin network. The elliptic curve cryptography will be replaced with PQ-safe versions. The Green Bitcoin protocol will help Bitcoin evolve into a post-quantum secure network.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.