Computer Science > Software Engineering
[Submitted on 16 Dec 2022]
Title:SE Factual Knowledge in Frozen Giant Code Model: A Study on FQN and its Retrieval
View PDFAbstract:Pre-trained giant code models (PCMs) start coming into the developers' daily practices. Understanding what types of and how much software knowledge is packed into PCMs is the foundation for incorporating PCMs into software engineering (SE) tasks and fully releasing their potential. In this work, we conduct the first systematic study on the SE factual knowledge in the state-of-the-art PCM CoPilot, focusing on APIs' Fully Qualified Names (FQNs), the fundamental knowledge for effective code analysis, search and reuse. Driven by FQNs' data distribution properties, we design a novel lightweight in-context learning on Copilot for FQN inference, which does not require code compilation as traditional methods or gradient update by recent FQN prompt-tuning. We systematically experiment with five in-context-learning design factors to identify the best in-context learning configuration that developers can adopt in practice. With this best configuration, we investigate the effects of amount of example prompts and FQN data properties on Copilot's FQN inference capability. Our results confirm that Copilot stores diverse FQN knowledge and can be applied for the FQN inference due to its high inference accuracy and non-reliance on code analysis. Based on our experience interacting with Copilot, we discuss various opportunities to improve human-CoPilot interaction in the FQN inference task.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.