Mathematics > Differential Geometry
[Submitted on 5 Dec 2022]
Title:The LG Fibration
View PDFAbstract:Deep Learning has significantly impacted the application of data-to-decision throughout research and industry, however, they lack a rigorous mathematical foundation, which creates situations where algorithmic results fail to be practically invertible. In this paper we present a nearly invertible mapping between $\mathbb{R}^{2^n}$ and $\mathbb{R}^{n+1}$ via a topological connection between $S^{2^n-1}$ and $S^n$. Throughout the paper we utilize the algebra of Multicomplex rotation groups and polyspherical coordinates to define two maps: the first is a contraction from $S^{2^n-1}$ to $\displaystyle \otimes^n_{k=1} SO(2)$, and the second is a projection from $\displaystyle \otimes^n_{k=1} SO(2)$ to $S^{n}$. Together these form a composite map that we call the LG Fibration. In analogy to the generation of Hopf Fibration using Hypercomplex geometry from $S^{(2n-1)} \mapsto CP^n$, our fibration uses Multicomplex geometry to project $S^{2^n-1}$ onto $S^n$. We also investigate the algebraic properties of the LG Fibration, ultimately deriving a distance difference function to determine which pairs of vectors have an invariant inner product under the transformation. The LG Fibration has applications to Machine Learning and AI, in analogy to the current applications of Hopf Fibrations in adaptive UAV control. Furthermore, the ability to invert the LG Fibration for nearly all elements allows for the development of Machine Learning algorithms that may avoid the issues of uncertainty and reproducibility that currently plague contemporary methods. The primary result of this paper is a novel method of nearly invertible geometric dimensional reduction from $S^{2^n-1}$ to $S^n$, which has the capability to extend the research in both mathematics and AI, including but not limited to the fields of homotopy groups of spheres, algebraic topology, machine learning, and algebraic biology.
Current browse context:
math.DG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.