Computer Science > Computer Vision and Pattern Recognition
[Submitted on 30 Nov 2022]
Title:Uncertainty-Aware Image Captioning
View PDFAbstract:It is well believed that the higher uncertainty in a word of the caption, the more inter-correlated context information is required to determine it. However, current image captioning methods usually consider the generation of all words in a sentence sequentially and equally. In this paper, we propose an uncertainty-aware image captioning framework, which parallelly and iteratively operates insertion of discontinuous candidate words between existing words from easy to difficult until converged. We hypothesize that high-uncertainty words in a sentence need more prior information to make a correct decision and should be produced at a later stage. The resulting non-autoregressive hierarchy makes the caption generation explainable and intuitive. Specifically, we utilize an image-conditioned bag-of-word model to measure the word uncertainty and apply a dynamic programming algorithm to construct the training pairs. During inference, we devise an uncertainty-adaptive parallel beam search technique that yields an empirically logarithmic time complexity. Extensive experiments on the MS COCO benchmark reveal that our approach outperforms the strong baseline and related methods on both captioning quality as well as decoding speed.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.