Computer Science > Networking and Internet Architecture
[Submitted on 27 Nov 2022]
Title:Coverage Analysis for Cellular-Connected Random 3D Mobile UAVs with Directional Antennas
View PDFAbstract:This letter proposes an analytical framework to evaluate the coverage performance of a cellular-connected unmanned aerial vehicle (UAV) network in which UAV user equipments (UAV-UEs) are equipped with directional antennas and move according to a three-dimensional (3D) mobility model. The ground base stations (GBSs) equipped with practical down-tilted antennas are distributed according to a Poisson point process (PPP). With tools from stochastic geometry, we derive the handover probability and coverage probability of a random UAV-UE under the strongest average received signal strength (RSS) association strategy. The proposed analytical framework allows to investigate the effect of UAV-UE antenna beamwidth, mobility speed, cell association, and vertical motions on both the handover probability and coverage probability. We conclude that the optimal UAV-UE antenna beamwidth decreases with the GBS density, and the omnidirectional antenna model is preferred in the sparse network scenario. What's more, the superiority of the strongest average RSS association over the nearest association diminishes with the increment of GBS density.
Current browse context:
cs.NI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.