Computer Science > Computer Vision and Pattern Recognition
[Submitted on 24 Nov 2022 (v1), last revised 16 Feb 2023 (this version, v2)]
Title:Explainable Model-Agnostic Similarity and Confidence in Face Verification
View PDFAbstract:Recently, face recognition systems have demonstrated remarkable performances and thus gained a vital role in our daily life. They already surpass human face verification accountability in many scenarios. However, they lack explanations for their predictions. Compared to human operators, typical face recognition network system generate only binary decisions without further explanation and insights into those decisions. This work focuses on explanations for face recognition systems, vital for developers and operators. First, we introduce a confidence score for those systems based on facial feature distances between two input images and the distribution of distances across a dataset. Secondly, we establish a novel visualization approach to obtain more meaningful predictions from a face recognition system, which maps the distance deviation based on a systematic occlusion of images. The result is blended with the original images and highlights similar and dissimilar facial regions. Lastly, we calculate confidence scores and explanation maps for several state-of-the-art face verification datasets and release the results on a web platform. We optimize the platform for a user-friendly interaction and hope to further improve the understanding of machine learning decisions. The source code is available on GitHub, and the web platform is publicly available at this http URL.
Submission history
From: Martin Knoche [view email][v1] Thu, 24 Nov 2022 17:52:47 UTC (7,430 KB)
[v2] Thu, 16 Feb 2023 20:54:31 UTC (7,430 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.