Mathematics > Optimization and Control
[Submitted on 17 Nov 2022]
Title:Optimization on the symplectic Stiefel manifold: SR decomposition-based retraction and applications
View PDFAbstract:Numerous problems in optics, quantum physics, stability analysis, and control of dynamical systems can be brought to an optimization problem with matrix variable subjected to the symplecticity constraint. As this constraint nicely forms a so-called symplectic Stiefel manifold, Riemannian optimization is preferred, because one can borrow ideas from unconstrained optimization methods after preparing necessary geometric tools. Retraction is arguably the most important one which decides the way iterates are updated given a search direction. Two retractions have been constructed so far: one relies on the Cayley transform and the other is designed using quasi-geodesic curves. In this paper, we propose a new retraction which is based on an SR matrix decomposition. We prove that its domain contains the open unit ball which is essential in proving the global convergence of the associated gradient-based optimization algorithm. Moreover, we consider three applications--symplectic target matrix problem, symplectic eigenvalue computation, and symplectic model reduction of Hamiltonian systems--with various examples. The extensive numerical comparisons reveal the strengths of the proposed optimization algorithm.
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.