close this message
arXiv smileybones

Happy Birthday to arXiv!

It's our birthday — woohoo! On August 14th, 1991, the very first paper was submitted to arXiv. That's 34 years of open science! Give today and help support arXiv for many birthdays to come.

Give a gift!
Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate
arxiv logo > cs > arXiv:2211.05927

Help | Advanced Search

arXiv logo
Cornell University Logo

quick links

  • Login
  • Help Pages
  • About

Computer Science > Sound

arXiv:2211.05927 (cs)
[Submitted on 11 Nov 2022]

Title:Optimal Condition Training for Target Source Separation

Authors:Efthymios Tzinis, Gordon Wichern, Paris Smaragdis, Jonathan Le Roux
View a PDF of the paper titled Optimal Condition Training for Target Source Separation, by Efthymios Tzinis and 2 other authors
View PDF
Abstract:Recent research has shown remarkable performance in leveraging multiple extraneous conditional and non-mutually exclusive semantic concepts for sound source separation, allowing the flexibility to extract a given target source based on multiple different queries. In this work, we propose a new optimal condition training (OCT) method for single-channel target source separation, based on greedy parameter updates using the highest performing condition among equivalent conditions associated with a given target source. Our experiments show that the complementary information carried by the diverse semantic concepts significantly helps to disentangle and isolate sources of interest much more efficiently compared to single-conditioned models. Moreover, we propose a variation of OCT with condition refinement, in which an initial conditional vector is adapted to the given mixture and transformed to a more amenable representation for target source extraction. We showcase the effectiveness of OCT on diverse source separation experiments where it improves upon permutation invariant models with oracle assignment and obtains state-of-the-art performance in the more challenging task of text-based source separation, outperforming even dedicated text-only conditioned models.
Comments: Submitted to ICASSP 2023
Subjects: Sound (cs.SD); Machine Learning (cs.LG); Audio and Speech Processing (eess.AS)
Cite as: arXiv:2211.05927 [cs.SD]
  (or arXiv:2211.05927v1 [cs.SD] for this version)
  https://doi.org/10.48550/arXiv.2211.05927
arXiv-issued DOI via DataCite

Submission history

From: Efthymios Tzinis [view email]
[v1] Fri, 11 Nov 2022 00:04:55 UTC (935 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled Optimal Condition Training for Target Source Separation, by Efthymios Tzinis and 2 other authors
  • View PDF
  • TeX Source
  • Other Formats
license icon view license
Current browse context:
cs.SD
< prev   |   next >
new | recent | 2022-11
Change to browse by:
cs
cs.LG
eess
eess.AS

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack