Computer Science > Machine Learning
[Submitted on 31 Oct 2022 (v1), last revised 3 Jul 2023 (this version, v2)]
Title:CausalBench: A Large-scale Benchmark for Network Inference from Single-cell Perturbation Data
View PDFAbstract:Causal inference is a vital aspect of multiple scientific disciplines and is routinely applied to high-impact applications such as medicine. However, evaluating the performance of causal inference methods in real-world environments is challenging due to the need for observations under both interventional and control conditions. Traditional evaluations conducted on synthetic datasets do not reflect the performance in real-world systems. To address this, we introduce CausalBench, a benchmark suite for evaluating network inference methods on real-world interventional data from large-scale single-cell perturbation experiments. CausalBench incorporates biologically-motivated performance metrics, including new distribution-based interventional metrics. A systematic evaluation of state-of-the-art causal inference methods using our CausalBench suite highlights how poor scalability of current methods limits performance. Moreover, methods that use interventional information do not outperform those that only use observational data, contrary to what is observed on synthetic benchmarks. Thus, CausalBench opens new avenues in causal network inference research and provides a principled and reliable way to track progress in leveraging real-world interventional data.
Submission history
From: Mathieu Chevalley [view email][v1] Mon, 31 Oct 2022 13:04:07 UTC (160 KB)
[v2] Mon, 3 Jul 2023 09:12:49 UTC (1,204 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.