Computer Science > Computer Vision and Pattern Recognition
[Submitted on 27 Oct 2022 (v1), last revised 21 Dec 2023 (this version, v2)]
Title:3D Shape Knowledge Graph for Cross-domain 3D Shape Retrieval
View PDF HTML (experimental)Abstract:The surge in 3D modeling has led to a pronounced research emphasis on the field of 3D shape retrieval. Numerous contemporary approaches have been put forth to tackle this intricate challenge. Nevertheless, effectively addressing the intricacies of cross-modal 3D shape retrieval remains a formidable undertaking, owing to inherent modality-based disparities. This study presents an innovative notion, termed "geometric words", which functions as elemental constituents for representing entities through combinations. To establish the knowledge graph, we employ geometric words as nodes, connecting them via shape categories and geometry attributes. Subsequently, we devise a unique graph embedding method for knowledge acquisition. Finally, an effective similarity measure is introduced for retrieval purposes. Importantly, each 3D or 2D entity can anchor its geometric terms within the knowledge graph, thereby serving as a link between cross-domain data. As a result, our approach facilitates multiple cross-domain 3D shape retrieval tasks. We evaluate the proposed method's performance on the ModelNet40 and ShapeNetCore55 datasets, encompassing scenarios related to 3D shape retrieval and cross-domain retrieval. Furthermore, we employ the established cross-modal dataset (MI3DOR) to assess cross-modal 3D shape retrieval. The resulting experimental outcomes, in conjunction with comparisons against state-of-the-art techniques, clearly highlight the superiority of our approach.
Submission history
From: Rihao Chang [view email][v1] Thu, 27 Oct 2022 02:51:24 UTC (15,215 KB)
[v2] Thu, 21 Dec 2023 11:31:38 UTC (11,811 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.