Computer Science > Computer Vision and Pattern Recognition
[Submitted on 23 Oct 2022 (v1), last revised 21 Nov 2022 (this version, v2)]
Title:Face Emotion Recognization Using Dataset Augmentation Based on Neural Network
View PDFAbstract:Facial expression is one of the most external indications of a person's feelings and emotions. In daily conversation, according to the psychologist, only 7% and 38% of information is communicated through words and sounds respective, while up to 55% is through facial expression. It plays an important role in coordinating interpersonal relationships. Ekman and Friesen recognized six essential emotions in the nineteenth century depending on a cross-cultural study, which indicated that people feel each basic emotion in the same fashion despite culture. As a branch of the field of analyzing sentiment, facial expression recognition offers broad application prospects in a variety of domains, including the interaction between humans and computers, healthcare, and behavior monitoring. Therefore, many researchers have devoted themselves to facial expression recognition. In this paper, an effective hybrid data augmentation method is used. This approach is operated on two public datasets, and four benchmark models see some remarkable results.
Submission history
From: Liangshun Dong [view email][v1] Sun, 23 Oct 2022 10:21:45 UTC (410 KB)
[v2] Mon, 21 Nov 2022 14:55:36 UTC (410 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.