Computer Science > Computer Vision and Pattern Recognition
[Submitted on 21 Oct 2022]
Title:Real-time Detection of 2D Tool Landmarks with Synthetic Training Data
View PDFAbstract:In this paper a deep learning architecture is presented that can, in real time, detect the 2D locations of certain landmarks of physical tools, such as a hammer or screwdriver. To avoid the labor of manual labeling, the network is trained on synthetically generated data. Training computer vision models on computer generated images, while still achieving good accuracy on real images, is a challenge due to the difference in domain. The proposed method uses an advanced rendering method in combination with transfer learning and an intermediate supervision architecture to address this problem. It is shown that the model presented in this paper, named Intermediate Heatmap Model (IHM), generalizes to real images when trained on synthetic data. To avoid the need for an exact textured 3D model of the tool in question, it is shown that the model will generalize to an unseen tool when trained on a set of different 3D models of the same type of tool. IHM is compared to two existing approaches to keypoint detection and it is shown that it outperforms those at detecting tool landmarks, trained on synthetic data.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.