Electrical Engineering and Systems Science > Systems and Control
[Submitted on 21 Oct 2022]
Title:Sum Capacity Maximization in Multi-Hop Mobile Networks with Flying Base Stations
View PDFAbstract:Deployment of multi-hop network of unmanned aerial vehicles (UAVs) acting as flying base stations (FlyBSs) presents a remarkable potential to effectively enhance the performance of wireless networks. Such potential enhancement, however, relies on an efficient positioning of the FlyBSs as well as a management of resources. In this paper, we study the problem of sum capacity maximization in an extended model for mobile networks where multiple FlyBSs are deployed between the ground base station and the users. Due to an inclusion of multiple hops, the existing solutions for two-hop networks cannot be applied due to the incurred backhaul constraints for each hop. To this end, we propose an analytical approach based on an alternating optimization of the FlyBSs' 3D positions as well as the association of the users to the FlyBSs over time. The proposed optimization is provided under practical constraints on the FlyBS's flying speed and altitude as well as the constraints on the achievable capacity at the backhaul link. The proposed solution is of a low complexity and extends the sum capacity by 23%-38% comparing to state-of-the-art solutions.
Submission history
From: Mohammadsaleh Nikooroo [view email][v1] Fri, 21 Oct 2022 11:23:19 UTC (529 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.