Computer Science > Information Theory
[Submitted on 18 Oct 2022]
Title:Information-theoretic Characterizations of Generalization Error for the Gibbs Algorithm
View PDFAbstract:Various approaches have been developed to upper bound the generalization error of a supervised learning algorithm. However, existing bounds are often loose and even vacuous when evaluated in practice. As a result, they may fail to characterize the exact generalization ability of a learning algorithm. Our main contributions are exact characterizations of the expected generalization error of the well-known Gibbs algorithm (a.k.a. Gibbs posterior) using different information measures, in particular, the symmetrized KL information between the input training samples and the output hypothesis. Our result can be applied to tighten existing expected generalization error and PAC-Bayesian bounds. Our information-theoretic approach is versatile, as it also characterizes the generalization error of the Gibbs algorithm with a data-dependent regularizer and that of the Gibbs algorithm in the asymptotic regime, where it converges to the standard empirical risk minimization algorithm. Of particular relevance, our results highlight the role the symmetrized KL information plays in controlling the generalization error of the Gibbs algorithm.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.