Computer Science > Machine Learning
[Submitted on 16 Oct 2022 (v1), last revised 1 Nov 2024 (this version, v3)]
Title:Accelerating Transfer Learning with Near-Data Computation on Cloud Object Stores
View PDF HTML (experimental)Abstract:Storage disaggregation underlies today's cloud and is naturally complemented by pushing down some computation to storage, thus mitigating the potential network bottleneck between the storage and compute tiers. We show how ML training benefits from storage pushdowns by focusing on transfer learning (TL), the widespread technique that democratizes ML by reusing existing knowledge on related tasks. We propose HAPI, a new TL processing system centered around two complementary techniques that address challenges introduced by disaggregation. First, applications must carefully balance execution across tiers for performance. HAPI judiciously splits the TL computation during the feature extraction phase yielding pushdowns that not only improve network time but also improve total TL training time by overlapping the execution of consecutive training iterations across tiers. Second, operators want resource efficiency from the storage-side computational resources. HAPI employs storage-side batch size adaptation allowing increased storage-side pushdown concurrency without affecting training accuracy. HAPI yields up to 2.5x training speed-up while choosing in 86.8% of cases the best performing split point or one that is at most 5% off from the best.
Submission history
From: Diana Petrescu [view email][v1] Sun, 16 Oct 2022 22:28:36 UTC (2,175 KB)
[v2] Mon, 9 Jan 2023 12:47:36 UTC (2,407 KB)
[v3] Fri, 1 Nov 2024 13:02:25 UTC (2,615 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.