Computer Science > Hardware Architecture
[Submitted on 29 Sep 2022]
Title:Real-Time Scheduling of Machine Learning Operations on Heterogeneous Neuromorphic SoC
View PDFAbstract:Neuromorphic Systems-on-Chip (NSoCs) are becoming heterogeneous by integrating general-purpose processors (GPPs) and neural processing units (NPUs) on the same SoC. For embedded systems, an NSoC may need to execute user applications built using a variety of machine learning models. We propose a real-time scheduler, called PRISM, which can schedule machine learning models on a heterogeneous NSoC either individually or concurrently to improve their system performance. PRISM consists of the following four key steps. First, it constructs an interprocessor communication (IPC) graph of a machine learning model from a mapping and a self-timed schedule. Second, it creates a transaction order for the communication actors and embeds this order into the IPC graph. Third, it schedules the graph on an NSoC by overlapping communication with the computation. Finally, it uses a Hill Climbing heuristic to explore the design space of mapping operations on GPPs and NPUs to improve the performance. Unlike existing schedulers which use only the NPUs of an NSoC, PRISM improves performance by enabling batch, pipeline, and operation parallelism via exploiting a platform's heterogeneity. For use-cases with concurrent applications, PRISM uses a heuristic resource sharing strategy and a non-preemptive scheduling to reduce the expected wait time before concurrent operations can be scheduled on contending resources. Our extensive evaluations with 20 machine learning workloads show that PRISM significantly improves the performance per watt for both individual applications and use-cases when compared to state-of-the-art schedulers.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.