Computer Science > Programming Languages
[Submitted on 26 Sep 2022]
Title:Full-Program Induction: Verifying Array Programs sans Loop Invariants
View PDFAbstract:Arrays are commonly used in a variety of software to store and process data in loops. Automatically proving safety properties of such programs that manipulate arrays is challenging. We present a novel verification technique, called full-program induction, for proving (a sub-class of) quantified as well as quantifier-free properties of programs manipulating arrays of parametric size $N$. Instead of inducting over individual loops, our technique inducts over the entire program (possibly containing multiple loops) directly via the program parameter $N$. The technique performs non-trivial transformations of the given program and pre-conditions during the inductive step. The transformations assist in effectively reducing the assertion checking problem by transforming a program with multiple loops to a program which has fewer and simpler loops or is loop-free. Significantly, full-program induction does not require generation or use of loop-specific invariants. To assess the efficacy of our technique, we have developed a prototype tool called Vajra. We demonstrate the performance of Vajra vis-a-vis several state-of-the-art tools on a large set of array manipulating benchmarks from the international software verification competition (SV-COMP) and on several programs inspired by algebraic functions that perform polynomial computations.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.