Mathematics > Numerical Analysis
[Submitted on 18 Aug 2022 (v1), last revised 5 Dec 2023 (this version, v2)]
Title:Sparsity promoting reconstructions via hierarchical prior models in diffuse optical tomography
View PDF HTML (experimental)Abstract:Diffuse optical tomography (DOT) is a severely ill-posed nonlinear inverse problem that seeks to estimate optical parameters from boundary measurements. In the Bayesian framework, the ill-posedness is diminished by incorporating {\em a priori} information of the optical parameters via the prior distribution. In case the target is sparse or sharp-edged, the common choice as the prior model are non-differentiable total variation and $\ell^1$ priors. Alternatively, one can hierarchically extend the variances of a Gaussian prior to obtain differentiable sparsity promoting priors. By doing this, the variances are treated as unknowns allowing the estimation to locate the discontinuities. In this work, we formulate hierarchical prior models for the nonlinear DOT inverse problem using exponential, standard gamma and inverse-gamma hyperpriors. Depending on the hyperprior and the hyperparameters, the hierarchical models promote different levels of sparsity and smoothness. To compute the MAP estimates, the previously proposed alternating algorithm is adapted to work with the nonlinear model. We then propose an approach based on the cumulative distribution function of the hyperpriors to select the hyperparameters. We evaluate the performance of the hyperpriors with numerical simulations and show that the hierarchical models can improve the localization, contrast and edge sharpness of the reconstructions.
Submission history
From: Anssi Manninen [view email][v1] Thu, 18 Aug 2022 14:51:50 UTC (813 KB)
[v2] Tue, 5 Dec 2023 01:18:49 UTC (5,421 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.